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Abstract
We present new results for LambdaCC and MotifCC, two recently introduced variants of the well-
studied correlation clustering problem. Both variants are motivated by applications to network
analysis and community detection, and have non-trivial approximation algorithms.

We first show that the standard linear programming relaxation of LambdaCC has a Θ(logn)
integrality gap for a certain choice of the parameter λ. This sheds light on previous challenges
encountered in obtaining parameter-independent approximation results for LambdaCC. We gen-
eralize a previous constant-factor algorithm to provide the best results, from the LP-rounding
approach, for an extended range of λ.

MotifCC generalizes correlation clustering to the hypergraph setting. In the case of hy-
peredges of degree 3 with weights satisfying probability constraints, we improve the best approx-
imation factor from 9 to 8. We show that in general our algorithm gives a 4(k−1) approximation
when hyperedges have maximum degree k and probability weights. We additionally present ap-
proximation results for LambdaCC and MotifCC where we restrict to forming only two clusters.
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1 Introduction

Correlation Clustering (CC), introduced by Bansal et al. [3], is often viewed as a
partitioning problem on signed graphs. Given n nodes whose edges have so-called positive or
negative weights (maybe both), the goal is to find the clustering which correlates as much as
possible with the edge weights. That is, a positive-weight edge suggests two nodes should be
clustered together, while a negative-weight edge suggests separation, and these weights are
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in some sense soft constraints. There is a variety of settings for Correlation Clustering,
including different objective functions, and special classes of edge weights, leading to a rich
and interesting family of approximation algorithms and hardness results.

In this document, we consider two recent variants of the problem, called Lambda
Correlation Clustering (LambdaCC) [22] and Motif Correlation Clustering
(MotifCC) [17]. Although introduced independently, both problems are motivated by
applications to community detection in unsigned graphs, and are interesting to study from a
theoretical perspective, each coming with non-trivial approximation guarantees. LambdaCC
is a generalization of the standard unweighted CC in which all positive edges have a
common weight, while all negative edges have another (possibly different) common weight. A
parameter λ determines these two weights and, implicitly, controls the size and structure of
clusters formed by optimizing the objective. MotifCC is a generalization of Correlation
Clustering to hypergraphs, designed to provide a framework for clustering graphs based
on higher-order subgraph patterns (i.e., motifs). We present new results for LambdaCC and
MotifCC, not only where the number of clusters formed is an outcome of minimizing the
objective, but also where we (additionally) restrict to forming only two clusters. In summary,
we make the following contributions:
1. We show that there exists some small λ such that the LambdaCC LP relaxation has

a Θ(logn) integrality gap. This hints at why constant-factor approximations have been
developed for λ ≥ 1/2, but no analogous result has been found for small λ. We also
extend the analysis of our previous algorithm for LambdaCC [22] to outline the range
of λ < 1/2 values, that admit an approximation factor in o(logn).

2. We show that when we restrict to two clusters, LambdaCC reduces to the Min Uncut
problem, which implies an O(

√
logn) approximation for this special case [1].

3. We generalize the 4-approximation of Charikar et al. for complete unweighted correlation
clustering to obtain a 4(k − 1) approximation for MotifCC on hypergraphs with edges
of degree k where edge weights satisfy probability constraints. We consider the same LP
relaxation as Li et al. [17], and apply a similar rounding technique. However, we provide
an approximation guarantee for arbitrary k that is linear in k, in addition improving the
factor for k = 3 from 9 to 8.

4. For Two-Cluster MotifCC, we design an algorithm that gives an asymptotic 1+k 2k−2

approximation by generalizing the 3-approximation of Bansal et al [3] for 2-CC (which
applies when k = 2). This is the first combinatorial result for 2-MotifCC, and is
a 7-approximation for k = 3.

2 Background and Previous Results

In the most general formulation of Correlation Clustering on (undirected) graphs –
excluding, for the moment, the generalization to hypergraphs – each pair of nodes (i, j) is
assigned a pair of nonnegative weights (w+

ij , w
−
ij), i.e., a similarity score and a dissimilarity

score. In many cases, only one of these weights is assumed to be nonzero, to indicate
strict similarity or strict dissimilarity between pairs of nodes. We focus on the objective of
minimizing disagreements, which can be formally expressed as an integer linear program:

minimize
∑

i<j w
+
ijxij + w−ij(1− xij)

subject to xij ≤ xik + xjk for all i, j, k
xij ∈ {0, 1} for all i < j

(1)

The variable xij is 1 if nodes i and j are in separate clusters, and is 0 otherwise. Thus, a
clustering that separates i, j incurs a penalty (also called a mistake, or a disagreement) of
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weight w+
ij , while if i, j are together the penalty has weight w−ij . The objective of maximizing

agreements has also been extensively considered: it shares the same set of optimal clusterings
as minimizing disagreements, but is easier from the perspective of approximations. For the
general weighted case, correlation clustering is equivalent to Minimum Multicut [10], which
implies an O(logn) approximation, but also suggests that Correlation Clustering (with
general weights) is unlikely to be approximated to within a constant factor in polytime [6].
For weights satisfying probability constraints (i.e., w+

ij + w−ij = 1), Ailon et al. gave a 2.5
approximation [2]. The best approximation factor for the standard unweighted problem (i.e.,
(w+

ij , w
−
ij) ∈ {(0, 1), (1, 0)}) is slightly better than 2.06 [7].

Fixing the number of clusters

In general, Correlation Clustering does not require a user to specify number of clusters
to be formed; the number of clusters arises naturally by optimizing the objective. However,
restricting the output of Correlation Clustering to a fixed number of clusters has also
been studied extensively. In their seminal work, Bansal et al. showed a 3-approximation for
minimizing disagreements in the two-cluster unweighted case (2-Correlation Cluster-
ing) [3]. Later, Giotis and Guruswami showed a polynomial time approximation scheme
for maximizing agreements and for minimizing disagreements, when the number clusters
is a fixed constant [12]. For the maximization version, 2-Correlation Clustering is
equivalent to Max Cut; based on this Dasgutpta et al. showed a 0.878-approximation for
arbitrary weights [9]. Extending Bansal et al.’s approach, Coleman et al. introduced faster,
greedy 2-approximations for minimizing disagreements for unweighted 2-Correlation
Clustering [8], and gave a more extensive overview of the historical interest in this problem.
Given this recurring interest in correlation clustering with a fixed number of clusters, we
address several questions involving the two-cluster case in this manuscript.

2.1 Lambda Correlation Clustering

In previous work, we introduced the LambdaCC objective, which can be viewed as a special
case of weighted correlation clustering (1) in which (w+

ij , w
−
ij) ∈ {(1− λ, 0), (0, λ)} for some

user-chosen parameter λ ∈ (0, 1). This provides the following framework for partitioning
unsigned networks: given an unsigned graph G = (V,E), treat each edge, in E, as a positive
edge of weight (1− λ) in a signed graph, and treat each non-edge as a negative edge with
weight λ. When λ = 1/2, LambdaCC amounts to unweighted Correlation Clustering;
with small λ, LambdaCC amounts to Sparsest Cut; and when λ is large, LambdaCC
amounts to Cluster Deletion. We previously outlined another, similar, edge-weighting
scheme [22] that is equivalent to the Modularity objective [18]. We do not consider it here,
however, as this scheme does not appear to lead to new approximation results.

For λ > 1/2, we gave a 3-approximation based on the LP-rounding technique of van Zuylen
and Williamson [21], and a 2-approximation which holds specifically for λ > |E|/(1 + |E|),
hence, for Cluster Deletion. We also note that when λ > 1/2, LambdaCC can be viewed
as a specific case of the specially weighted correlation clustering variant considered by Puleo
and Milenkovic [19], for which they gave a 5-approximation based on a generalization of the
LP rounding scheme of Charikar et al. [5]. However, the proof strategies for all of these
algorithms fail when considering arbitrarily small λ.

ISAAC 2018
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2.2 Motif Correlation Clustering

Li et al. introduced a higher-order generalization of Correlation Clustering, which they
call Motif Correlation Clustering (MotifCC), as a means for clustering networks
based on higher-order motif patterns shared among nodes [17]. This objective is motivated
by previous successful results for motif-based graph clustering (see e.g., [4]). Although a
similar higher-order correlation clustering objective was considered by Kim et al. for image
segmentation [16], Li et al. were the first to study the objective from a theoretical perspective.
In their approach, we let Ek denote the set of all k-tuples of nodes in G, and let each E ∈ Ek

have a positive weight, w+
E , and a negative weight, w−E . If a clustering separates at least one

pair of nodes in E , this gives a penalty of w+
E ; otherwise, there is a penalty of w−E . MotifCC

is formally expressed as the following ILP, a generalization of ILP (1):

minimize
∑
E∈Ek

w+
E xE + w−E (1− xE)

subject to xuv ≤ xuw + xvw for all u, v, w
xuv ∈ {0, 1} for all u < v

xuv ≤ xE for all u, v ∈ E
(k − 1)xE ≤

∑
u,v∈E xuv for all E ∈ Ek

xE ∈ {0, 1} for all E ∈ Ek.

(2)

The first two constraints above ensure the variables encode a clustering (xuv = 1 if u, v are
separated). Since xE is binary, constraint xE ≥ xuv ensures that if any two nodes u, v in
E are separated, then xE = 1 (i.e., the k-tuple is split). The fourth constraint guarantees
that xE = 0 if all pairs of nodes in E are together. Li et al. considered an even more general
objective, which they referred to as Mixed Motif Correlation Clustering (MMCC),
where motifs of multiple sizes are considered at once, and the objective is a positive linear
combination of objectives of the form (2) for different values of k. In their analysis they
restrict to hyperedges of size 2 and 3, in other words they optimize an objective like this:

minimize
∑

u<v w
+
uvxuv + w−uv(1− xuv) +

∑
E∈E3

w+
E xE + w−E (1− xE) .

For this setting, they show a 9-approximation for the problem when hyperedge weights
satisfy probability constraints (w+

E +w−E = 1, for every hyperedge E of size 2 or 3). Recently,
Fukunga gave an O(k logn) approximation for general weighted hypergraphs by rounding
the same LP [11].

3 New Results for LambdaCC

Given a signed graph, G, in which every pair of nodes is part of a negative edge set, E−, or
a positive edge set, E+, the linear program relaxation of LambdaCC is

minimize
∑

(i,j)∈E+(1− λ)xij +
∑

(i,j)∈E− λ(1− xij)
subject to xij ≤ xik + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i < j

(3)

Although a constant-factor approximation for LambdaCC exists for λ ≥ 1/2, by rounding
LP (3), we show that there exists some small λ such that the integrality gap is O(logn).
We then give parameter-dependent approximation guarantees for small λ, and consider new
results for two-cluster LambdaCC.
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3.1 Integrality Gap for the LambdaCC Linear Program
Demaine et al. prove that the integrality gap for the general weighted Correlation
Clustering LP relaxation is O(logn) [10]. This does not immediately imply anything for
our specially weighted case, but adapting some of their ideas, and adding some non-trivial
steps, does reveal an O(logn) integrality gap for the LambdaCC linear program relaxation.
The proof takes the following steps.
1. Construct an instance of LambdaCC from an expander graph, G.
2. Prove that, because of the expander properties of G, the optimal LambdaCC clustering

must make Ω(n) mistakes.
3. Demonstrate the LP relaxation has a feasible solution with a score of O(n/logn).

In order to accomplish third step listed above, we do not (necessarily) produce a feasible
solution for the standard LP relaxation of LambdaCC: in particular, in our solution triangle
constraints are not guaranteed. Instead, we produce a feasible solution for a related linear
program considered by Wirth in his PhD thesis [23]. The fundamental construct of this LP is
the Negative Edge with Positive Path Cycle (NEPPC), where, NEPPC (i1, i2, . . . , im)
represents a sequence (a path) of (positive) edges, (i1, i2), (i2, i3), . . . , (im−1, im) ∈ E, with a
single (negative) non-edge completing the cycle: (i1, im) /∈ E. For LambdaCC, defined on a
graph G = (V,E), with parameter λ ∈ (0, 1), we have the linear program:

minimize
∑

(i,j)∈E(1− λ)xij +
∑

(i,j)/∈E λ(1− xij)
subject to xi1,im ≤

∑m−1
j=1 xij ,ij+1 for all NEPPC (i1, i2, . . . , im)

xij ≤ 1 for all (i, j) /∈ E
0 ≤ xij for all (i, j) .

(4)

Wirth [23] proved that the set of optimal solutions to the NEPPC linear program (4) is
exactly the same as the optimal solution set to the Correlation Clustering LP, the
relation of ILP (1).4 Since a feasible solution for the LambdaCC NEPPC linear program (4)
is an upper bound on the optimum for (4), which is the same as the optimum for the standard
LambdaCC LP, we can bound the optimum of the latter. We now prove our result:

I Theorem 1. There exists some λ such that the integrality gap of LP (3) is O(logn).

Proof. The expander graph

Let G = (V,E) be a (d, c)-expander graph, where both d and c are constants (Reingold et
al. proved that such expanders exist [20]). That is, G is d-regular, and for every S ⊂ V

with |S| ≤ n/2, we have

cut(S)
|S|

≥ c =⇒ cut(S)
|S|

+ cut(S)
|S̄|

≥ c =⇒ cut(S)
|S||S̄|

≥ c

n

where cut(S) denotes the number of edges between S and S̄ = V \S. Define the scaled
sparsest cut of a set S to be cut(S)/(|S||S̄|) and let λ∗ minimize this ratio over all possible
sets S ⊂ V . In previous work we showed that for any λ ≤ λ∗, the optimal LambdaCC
clustering places all nodes into one cluster, but there exists a range of λ values slightly larger
than λ∗ such that the optimum clustering coincides with a partitioning that produces the

4 Although the proof is shown for the unweighted case, we note that all aspects of the proof immediately
carry over to the weighted case.

ISAAC 2018
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scaled sparsest cut score [22]. For the expander graph we consider, this λ∗ is at most the
scaled sparsest cut score obtained by setting S to be a single node, so we have these upper
and lower bounds on λ∗: c/n ≤ λ∗ ≤ d/(n− 1).

The LambdaCC construction

Let S∗ be a set inducing an optimal scaled sparsest cut partition: λ∗ = cut(S∗)/(|S∗||S̄∗|).
From Theorem 3.2 in our previous work [22], we know that there exists some λ′, slightly
larger than λ∗ whose optimum LambdaCC solution is the bipartition {S∗, S̄∗}; let the
LambdaCC score of this solution be OPT , and let ε = λ′ − λ∗. We can choose ε > 0 to be
arbitrarily small, so it suffices to assume λ′ < 2λ∗.

Bounding OPT from below

With our choice of λ′, by definition,

OPT = cut(S∗)− λ′|S∗||S̄∗|+ λ′
((

n

2

)
− |E|

)
= 0− ε|S∗||S̄∗|+ λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E|

)
= λ∗

((
n

2

)
− |E|

)
+ ε

((
n

2

)
− |E| − |S∗||S̄∗|

)
≥ λ∗

(
n(n− 1)

2 − nd

2

)
+ ε

(
n(n− 1)

2 − nd

2 −
n2

4

)
≥ c

n

(
n(n− 1)

2 − nd

2

)
= Ω(n) ,

relying on the definition of λ∗, the fact that |E| = nd/2 in this expander graph, and the
bound |S∗||S̄∗| ≤ n2/4.

Upper Bounding the NEPPC LP

We now show that a carefully crafted feasible solution for the NEPPC LP (4) has score
O(n/ logn). Let dist(i, j) denote the minimum path length between nodes i and j in G,
based on unit-weight edges E. We are assuming the graph is connected, so each dist(i, j)
is a finite integer. (If the graph is not connected, we ought to solve LambdaCC on each
connected component separately.) Consider the following setting of values xij :

xij =


2/(logd n) if (i, j) ∈ E
1 if (i, j) /∈ E and dist(i, j) ≥ (logd n)/2
0 if (i, j) /∈ E and dist(i, j) < (logd n)/2 .

We show that this is feasible for the NEPPC LP (4). Since all (positive) edges are assigned
the same LP score, the NEPPC constraints are satisfied at a (negative) non-edge, (i, j), if
and only if xij ≤ dist(i, j) · 2/(logd n). When dist(i, j) is less than logd(n)/2, xij = 0, so this
inequality is trivially true. When dist(i, j) is at least logd(n)/2, the NEPPC inequality is
true because dist(i, j) · 2/(logd n) is at least 1, which is xij .

For constant d, the contribution from the (positive) edges to LP (4) is:

(1− λ′)|E|2/(logd n) = (1− λ′)(nd)/(logd n) = O(n/ logn) .
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From the (negative) non-edges, since the factor is 1−xij , we only have a non-zero contribution
from the set of (i, j) /∈ E such that dist(i, j) < (logd n)/2 = logd

√
n. For each node v ∈ V ,

there are at most dlogd

√
n =
√
n nodes within this distance; the total number of non-edges

that contribute to the LP cost is therefore in O(n
√
n). Each has a weight λ′ < 2λ∗, so

LP contribution of non-edges ≤ λ′n
√
n ≤ (2d/(n− 1))n

√
n = O(

√
n) ≤ O(n/ logn).

Therefore, the total LP cost corresponding to this feasible solution to NEPPC LP (4) is
O(n/ logn). Since the optimal LambdaCC solution has cost Ω(n), we have shown that there
exists some λ < 1/2 such that the LP relaxation (3) has an integrality gap of O(logn). J

3.2 Parameter-Dependent Approximation Guarantees
We now describe improved approximation guarantees for ranges of λ below 1/2, extending
the analysis of our previous 3-approximation for λ ≥ 1/2 [22]. This 3-approximation is
obtained by solving the LP relaxation, forming a new unweighted signed graph G′, and then
applying the pivoting procedure, which repeatedly selects a node and clusters it with its
positive neighbors. The approximation guarantee comes from applying a theorem of van
Zuylen and Williamson for deterministic pivoting algorithms for correlation clustering [21].
We give a full proof of the following result in the extended version of the paper [13]

I Theorem 2. Let (xij) be the variables from solving the LambdaCC LP relaxation, and
form a new unweighted Correlation Clustering input G′ by putting a positive edge
between i and j, if xij ≤ 1/3 and a negative edge otherwise. Applying a pivoting algorithm
to G′ yields a clustering that is a 3-approximation for λ > 1/2, and an α-approximation
otherwise, where α = max{ 1/λ, (6− 3λ)/(1 + λ)}.

This theorem implies an approximation better than 4.5 for all λ ∈ (0.2324, 0.5), but shows
that the algorithm performs worse and worse as λ decreases. However, for all λ in ω(1/ logn),
this outputs a better result than the standard, O(logn), rounding scheme.

3.3 Two-Cluster LambdaCC
Before moving on we note an approximation guarantee and a hardness result that holds for
the two-cluster variant of LambdaCC.

I Theorem 3. Two-cluster LambdaCC can be reduced to the weighted Min Uncut problem.
An instance of Min Uncut with non-zero optimum can be reduced to an instance of two-
cluster LambdaCC whose objective score for any clustering differs by at most a small
constant factor.

We give a full proof in the full version [13]. The first fact implies the O(
√

logn) approximation,
due to Agarwal et al. [1], extends to 2-LambdaCC. This has important ramifications even
without the restriction on the number of clusters; LambdaCC is guaranteed to form two
clusters for a certain parameter regime near λ∗ [22, Theorem 3.2]. The reduction from Min
Uncut to two-cluster LambdaCC implies the latter cannot be approximated to within any
constant factor [15, 14].

4 Motif Correlation Clustering

We now turn to improved approximations for MotifCC. We begin by presenting a 4(k − 1)
approximation algorithm for the problem for hyperedges of degree k with edge weights
satisfying probability constraints. We then consider a first step towards algorithms that do
not rely on solving an expensive LP relaxation, by showing how to obtain a combinatorial
approximation for two-cluster MotifCC (2-MotifCC) for complete, unweighted instances.

ISAAC 2018
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Algorithm 1 Generalized CGW for Minimizing Hyper-Disagreements.
Input: Signed hypergraph G = (V,Ek), and threshold parameters γ and δ
Solve the LP-relaxation of ILP (2), obtaining distances (xij)
W ← V , C ← ∅
while W 6= ∅ do

5: Choose u ∈W arbitrarily, and define Tu ← {i ∈W\{u} : xui ≤ γ}
if
∑

i∈Tu
xui < γδ|Tu| then S := {u} ∪ Tu

else S := {u}
C ← C ∪ {S}, W ←W\S

4.1 The 4(k − 1) approximation
Our algorithm for MotifCC is closely related to the approach of Li et al. [17] and directly
generalizes the LP-rounding technique of Charikar et al. [5], which is itself an instantiation
of the more general rounding procedure given in Algorithm 1. The general algorithm forms
clusters based on threshold parameters γ and δ, which are part of the input. Charikar et
al. proved that for the k = 2 unweighted case of MotifCC, setting γ = δ = 1/2 leads to
a 4-approximation. Li et al. generalized this to obtain a 9-approximation for k = 3 in the
more general probability constrained case, by selecting γ = δ = 1/3 [17]. Although they did
not provide an analysis for motifs of size k > 3, it appears that their strategy of setting
γ = δ = 1/k would at best lead to a k2 approximation. In contrast, we analyze a choice of
parameters which leads to an approximation that is linear in k.

The result is somewhat detailed, and we begin with some notation. Let the family
of k-tuples be Ek, and let W ⊆ V be the subset of nodes in G that remain unclustered
after a certain number of rounds of Algorithm 1. When considering a vertex u ∈ W and
a specific k-tuple E , it will be convenient to define a to be the node in E closest to u, i.e.,
arg mini∈E xui, while z is the farthest, arg maxi∈E xui. We have Tu similar to Algorithm 1,
with γ = 1/(2(k− 1)), while T k

u are those k-tuples that include u, with all non-u nodes in Tu:

Tu =
{
i ∈W\{u} : xui ≤ 1

2(k−1)

}
and T k

u = {E ∈ Ek : u ∈ E and (E−{u}) ⊂ Tu} . (5)

For z /∈ Tu, we let Pz be those k-tuples in which z is the farthest element from u and
some a ∈ Tu is closest, viz.

Pz = {(a, j2, j3, . . . , jk−1, z) ∈ Ek : a ∈ T, xua ≤ xu,j2 ≤ xu,j3 ≤ · · · ≤ xuz} . (6)

Finally, LP(A) denotes the LP score associated with a subset A of the set of degree-k
hyperedges: A ⊆ Ek.

I Theorem 4. For constant k, let G = (V,Ek) be a hypergraph in which for all E ∈ Ek

the weights satisfy probability constraints, w+
E + w−E = 1. Applying Algorithm 1 with γ =

1/(2(k− 1)) and δ = 1/2 outputs a clustering that is a 4(k− 1)-approximation to MotifCC.

We start with a proof outline, establish three lemmata, and then give full details in Section 4.2.
At each step the algorithm forms a cluster Su around an arbitrary u ∈W . This cluster is
associated with a set of hyperedges Au that have either been cut or placed inside of Su. If
for each Su individually we can show that mistakes made at Au are within a fixed factor of
the lower bound LP (Au), this will imply an overall bound for the entire clustering.
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In forming a cluster around u, the algorithm first identifies a set of nodes Tu whose LP
distance to u is at most a preliminary threshold γ = 1/(2(k − 1)). To verify if {u} ∪ Tu

will make a good cluster, the algorithm checks whether on average the distance from u to
Tu is below a tighter threshold γδ = 1/(4(k − 1)). If this doesn’t hold, we let {u} remain
a singleton cluster. In forming clusters, we only explicitly consider distance variables xij

for (i, j) ∈ V × V . However, the MotifCC objective and its LP relaxation both depend
on the hyperedge variables xE for E ∈ Ek. Therefore, in order to bound the weight of
hyperedge mistakes we must leverage the LP constraints to understand the relationships
between distance and hyperedge variables. Lemma 5 establishes several useful relationships
we will need later. Also, because our algorithm makes decisions based on the average distance
between u and Tu, we must interpret what this means for the average value of hyperedge
variables xE in certain sets of hyperedges that we are trying to account for (e.g. Pz and T k

u

in (5) and (6)). Lemmata 6 and 7 address this task. We give proofs for these lemmata in
the full version of the paper [13]. In the following, we adopt the convention that xii = 0 for
every node i ∈ V .

I Lemma 5. For all E ∈ Ek and any u ∈ V ,
1. xE ≤

∑
i∈E xui,

2. xE ≤ xua + (k − 1)xuz, and
3. xE ≥ xuz − xua.

I Lemma 6. For all u ∈W ⊆ V , if
∑

i∈Tu
xui ≥ β|Tu|, then

∑
E∈T k

u
xE ≥ β|T k

u |.

I Lemma 7. For all E ∈ Pz, let aE denote the node in E closest to u. If
∑

i∈Tu
xui < β|Tu|,

then
∑
E∈Pz

xuaE < β|Pz|.

4.2 Proof of Theorem 4

Proof. We must account for the weight of positive mistakes made at singleton clusters, {u},
and the weight of both positive and negative mistakes made at non-singleton clusters.

Singleton Clusters

Consider a cluster S = {u}. The algorithm incurs a penalty w+
E for each E such that u ∈ E .

If some node j ∈ E − {u} is not in Tu, then the contribution to the LP score is w+
E xE , which

is at least w+
E xuj , and therefore exceeds w+

E /(2(k − 1)). Thus the cost of the mistake at
most 2(k − 1) times the LP penalty.

It remains to account for all positive hyperedges in T k
u . Even if w+

E = 1 for all E ∈ T k
u ,

|T k
u | =

( |T |
k−1
)
is an upper bound on the total weight of mistakes made on hyperedges in T k

u .
By the first observation of Lemma 5, and because u ∈ E ,

xE ≤
∑

i∈E xui ≤ (k − 1) 1
2(k−1) = 1

2 , hence, (1− xE) ≥ xE .

Since w+
E + w−E = 1, we can lower bound the contribution of T k

u to the LP score:

LP(T k
u ) =

∑
E∈T k

u

w+
E xE + w−E (1− xE) ≥

∑
E∈T k

u

w+
E xE + w−E xE =

∑
E∈T k

u

xE ≥ |T k
u |

1
4(k − 1) ,

by Lemma 6, so we have paid for the mistakes within a factor 4(k − 1).
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Negative Mistakes at Non-Singletons

Next, we account for negative mistakes in clusters of the form S = {u} ∪ T . Charikar et
al. showed that, when k = 2, these are accounted for within a factor 4; we prove the same for
all k ≥ 3. For each E ∈ Ek such that E ⊂ S, the algorithm makes a mistake of weight w−E .
On the other hand, the LP pays w−E (1− xE). Applying the first observation in Lemma 5,

xE ≤
∑

i∈E xui ≤ k 1
2(k−1) ≤

3
4 , hence, w−E (1− xE) ≥

w−E
4 ,

and we have the desired result for k ≥ 3.

Positive Mistakes at Non-Singletons

A hyperedge E contained entirely within S = {u} ∪ T incurs no positive-weight error. So,
finally, we account for positive mistakes at hyperedges E where at least one node of E is in S
and at least one node in E is /∈ S. For each such hyperedge, we explicitly label the nodes
of E with indices a = j1 < j2 < · · · < jk = z, with xua = xu,j1 ≤ xu,j2 ≤ . . . ≤ xu,jk

= xuz

where a ∈ Tu and z /∈ Tu. By the second and third observation in Lemma 5 we know that

xuz − xua ≤ xE ≤ xua + (k − 1)xuz , (7)

First, if a = u, then we know w+
E xE ≥ w+

E (xuz − xuu) > w+
E /(2(k − 1)), and we have

individually accounted for each such positive mistake within a factor 2(k − 1). If a 6= u and
xuz ≥ 3/(4(k − 1)), we bound the mistake within factor 4(k − 1):

w+
E xE ≥ w

+
E (xuz − xua) ≥ w+

E (3/(4(k − 1))− 1/(2(k − 1)) = w+
E /(4(k − 1)) .

Finally, if a 6= u and xuz ∈
(

1
2(k−1) ,

3
4(k−1)

)
, we account for all positive weights associated

with edges in the following set, together:

Pz = {E ∈ Ek : E = (a, j2, . . . , z), a ∈ T, xua ≤ xu,j2 ≤ xu,j3 ≤ · · · ≤ xuz} .

The weight of mistakes made by the algorithm is W+
z =

∑
p∈Pz

w+
p , and we also define

W−z =
∑

p∈Pz
w−p . We start by observing that, since xua ≤ xE and W+

z +W−z = |Pz|, due to
probability constraints on weights, Lemma 7 tells us that

∑
E∈Pz

xua < (W+
z +W−z )/(4(k−1)).

LP (Pz) =
∑
E∈Pz

w+
E xE + w−E (1− xE)

≥
∑
E∈Pz

w+
E (xuz − xua) + w−E (1− xua − (k − 1)xuz) (by inequalities in (7))

=
∑
E∈Pz

w+
E xuz + w−E (1− (k − 1)xuz)−

∑
E∈Pz

xua

≥W+
z xuz +W−z (1− (k − 1)xuz)− W +

z +W−z
4(k−1) (by the starting observation)

≥W+
z

(
1

2(k−1) −
1

4(k−1)

)
+W−z

(
1− 1

4(k−1) − (k − 1) 3
4(k−1)

)
≥W+

z
1

4(k−1) ,

so the mistakes on all hyperedges in Pz are, collectively, accounted for within factor 1/(4(k−
1)), concluding the Proof of Theorem 4. J

We outline two immediate extensions of this theorem in the full version [13]. First we
note that the same approximation guarantees holds for the Mixed Motif Correlation
Clustering objective, considered by Li et al. We then consider a hybrid Lambda-MCC
objective in which positive hyperedges have weight (1− λ) and negative hyperedges have
weight λ, for which the algorithm is guaranteed to produce the same approximation factor
when λ ≥ 1/2.
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Algorithm 2 Pick-A-Pivot-Tuple.
Input: An instance of 2-MotifCC: G = (V,Ek) be a hypergraph where (w+

E , w
−
E ) ∈

{(0, 1), (1, 0)} for every k-tuple.
for (k − 1)-tuple K ⊆ V do
CK ← the clustering formed by placing K in a cluster with all u such that E = K∪{u}

is positive, and placing all remaining nodes in the other cluster.
Return the CK with fewest mistakes.

4.3 Two-Cluster MotifCC

The LP relaxation of MotifCC involves O(nk) variables and O(nk) constraints for all k > 2,
and is therefore very expensive to solve in practice. For standard Correlation Clustering,
only a few of the known approximation algorithms avoid solving an expensive convex
relaxation [2, 3]; it is natural to ask whether a similar, combinatorial, approach can be taken
for MotifCC. We give first steps in this direction, with a constant-factor combinatorial
approximation algorithm for MotifCC, when the output is restricted to two clusters,
generalizing the 3-approximation of Bansal et al. for 2-Correlation Clustering [3]. Our
method is shown in Algorithm 2. We call this algorithm Pick-a-Pivot-Tuple, and show it
satisfies the following result:

I Theorem 8. For a constant integer k > 1, Algorithm 2 returns a (1 + kc)-approximation
for 2-MotifCC, where c ≤ 2k−2 for k = 2, 3, while limn→∞ c = 2k−2 for k > 3.

We give a proof of the above result in the full version [13]. Although the exponential
dependence on k makes this a poor approximation for large motifs, at least in the case k = 3,
this is a 7-approximation for all n, not just for large n.

5 Discussion

We have demonstrated a Θ(logn) integrality gap for the LambdaCC LP relaxation, which
highlights why previous attempts to obtain a constant-factor approximation via LP rounding
have failed. It remains an open question whether better approximation factors exist for small
values of λ in O(1/ logn). For minimizing disagreements, there are relatively few techniques
that don’t rely on the LP relaxation that lead to approximations better than O(logn) for
different variants of correlation clustering. The next step is either to develop an entirely new
approach or prove further hardness results for approximating LambdaCC when λ is small.

For MotifCC, we have given an approximation algorithm for arbitrary (constant)
hyperedge size k that is linear in k, and provided a first combinatorial approximation result,
which avoids solving an LP relaxation, for to the two-cluster case. An interesting open
question is whether a pivoting algorithm à la Ailon et al. [2] could be developed for the
MotifCC objective. For maximizing agreements, the simple strategy of either placing all
nodes together or separating all nodes into singletons will still lead to a 1/2-approximation
for hypergraphs with arbitrary weights and any k. This leads to open questions about what
results for maximizing agreements can be generalized to the hypergraph setting. Another
open question is whether an approximation that is independent of k could be developed for
minimizing disagreements in hypergraphs.
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